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Abstract

Designing novel functional proteins remains a slow and expensive process due to
a variety of protein engineering challenges; in particular, the number of protein
variants that can be experimentally tested in a given assay pales in comparison to
the vastness of the overall sequence space, resulting in low hit rates and expensive
wet lab testing cycles. In this paper, we propose a few-shot learning approach to
novel protein design that aims to accelerate the expensive wet lab testing cycle and
is capable of leveraging a training dataset that is both small and skewed (≈ 105

datapoints, < 1% positive hits). Our approach is composed of two parts: a semi-
supervised transfer learning approach to generate a discrete fitness landscape for a
desired protein function and a novel evolutionary Monte Carlo Markov Chain sam-
pling algorithm to more efficiently explore the fitness landscape. We demonstrate
the performance of our approach by experimentally screening predicted high fitness
gene activators, resulting in a dramatically improved hit rate compared to existing
methods. Our method can be easily adapted to other protein engineering and design
problems, particularly where the cost associated with obtaining labeled data is
significantly high. We have provided open source code for our method at https://
github.com/SuperSecretBioTech/evolutionary_monte_carlo_search.

1 Introduction

The design and optimization of proteins with specific functionality is a long-sought pursuit in protein
engineering. Since proteins are composed of sequences of amino acids which ultimately dictate their
structure and function, the protein engineering problem can be reformulated as finding the optimal
mapping from amino acid sequence s of length L to biological function f : s → f(s), where we
call f the fitness function. Finding the optimum of f can be seen as a high-dimensional discrete
combinatorial optimization problem [1]. The enormous size of the protein sequence space (e.g. 20L
possible peptides of length L; 3.87e110 for L = 85) and the presence of sensitive and sporadic high
fitness regions in the fitness landscape [2] makes novel protein design extremely challenging.
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The traditional experimental approach involves high-throughput, iterative laboratory methods such
as directed evolution [3, 4], deep mutational scans [5], and semi-rational design [6]. However,
these methods typically require multiple rounds of engineering and analysis, making them tedious,
expensive, and time-consuming [7]. Furthermore, the number of variants capable of being tested in
even the most advanced laboratories (≈ 105 to 106) is miniscule in comparison to the size of the total
sequence space ; additionally, high-throughput screening can be challenging to implement for some
classes of proteins [8].

In the past decade, the application of machine learning methods to protein engineering problems
has been massively successful [9]. In this context, machine learning models are trained to learn the
sequence-to-function map (also called the fitness function) and then used to propose new sequences
that maximize the fitness (thus maximizing predicted function). Typically these are two distinct steps,
where the fitness is estimated with a machine learning model and then this sequence-to-function
map is used to explore the fitness landscape with methods such as Metropolis-Hastings Monte Carlo
Search [8].

In recent years, other methods such as generative models have been proposed to tackle this problem,
including deep generative networks [10–12], generative adversarial networks [13, 14] and diffusion
models [15]. In these cases the exploration problem is trivial, as the model produces an embedding in a
real, typically low-dimensional, space where sampling from that space is computationally inexpensive.
However, generative approaches typically require huge amounts of training data and a large number
of positive examples to ensure that the model embeddings are meaningful and so that they do not
simply memorize positive examples, an issue that has been widely observed to happen in image
GANs [16, 17]. Given the relatively small number of sequences in our training data and the extreme
paucity of positive examples, we anticipated our small and skewed training data would would prove
insufficient for a generative modeling approach. On the other hand, transfer learning of large protein
language models (LPLMs) has shown success in modeling and designing novel proteins with fitness
functions trained on small numbers of positive hits [8, 18]. While transfer learning and ML-based
sequence-to-function mapping are beginning to receive a good deal of attention, model-guided fitness
landscape exploration remains an understudied problem in the context of protein engineering [19].

The Metropolis-Hastings Monte Carlo Search (MHMCS) method [19–21] is the standard method
for the exploration of high-dimensional discrete landscapes, including those generated by machine
learning algorithms [8, 22, 23]; however MHMCS suffers from an inability to escape deep local
optima. Other approaches for sampling the sequence space include gradient-based sampling [2, 24],
and modified Gibbs sampling [25]. While powerful, these approaches require significant computation
near the local neighborhood of the fitness landscape and are therefore too computationally intensive
for sequences of any significant length, (e.g. gradient-based methods require 19 ·L computations and
Gibbs requires L computations per iteration).

Evolutionary Monte Carlo (EMC) [26, 27] is an advanced sampling method that draws inspiration
from genetic recombination as well as physics-based MCMC techniques. While EMC has previously
been used for a variety of sampling tasks [26, 28–31], its potential as an exploratory algorithm for
protein design remains unexplored. In this paper, we modify EMC as a search tool for exploring
the complex fitness landscape of protein sequences capable of gene regulation, which we call EMC
Search (EMCS). While EMCS is much less computationally intensive than gradient-based and
Gibbs sampling (and only slightly more intensive than MHMCS), we expect it to benefit from
faster convergence (due to parallel tempering) and to provide a more comprehensive and efficient
exploration of the fitness landscape (by allowing for interpolation on the molecule level between
chains).

Overall, we propose a design strategy for novel protein sequences using a few-shot transfer learning-
based approach. Though our method is generally applicable to a diverse range of problems, we
apply our method to the design of small gene activator proteins. We previously [32] performed a
high-throughput screen of protein sequences to discover novel gene activators, and identified less
than 200 sequences which validated as positive hits (resulting in a hit rate of ≈ 0.5%). The low
number of positive examples presents a particular problem for ML-guided engineering because it
is difficult to ensure that the fitness function will extrapolate well outside the small neighborhood
of the positive examples in the training set. In this study, we demonstrate that EMCS is not only
capable of improving the sequence diversity and novelty of designed sequences, but it dramatically
improves the hit rate of the proposed sequences compared to the original high-throughput screen.
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Figure 1: a. Transfer learning approach for predicting gene activators from sequence using LPLM
embeddings. b. Fitness landscape diagram representing the effective search spaces of MHMCS (pink)
and EMCS (blue). When initialized at positive hits, MHMCS is constrained to locally search near the
starting molecule other high fitness sequences, while EMCS interpolates between multiple starting
molecules with varying resolution to optimize the search and escape deep local optima.

Additionally, EMCS can be initialized from known hits and still identify candidate sequences that are
vastly different than any of the original molecules, while MHMCS has difficulty escaping from the
local optima of known hits.

2 Model and Search

2.1 Training Transfer Learning-Based Fitness Models

We previously performed and independently validated a high-throughput screen in which 85 amino
acid (85aa) peptides were assayed for their ability to activate a synthetic genetic locus using the dCas-
Mini Gene Expression Modulator System (dCasMini-GEMS) [32]. This resulted in the identification
of 173 gene activators ("positive hits") from a training set of 34217 protein sequences (0.51% hit
rate). Using these data, we sought to train a machine learning model capable of predicting proteins
capable of gene activation from sequence alone. Since a data set of peptide sequences is essentially
composed of strings of amino acid characters, each peptide sequence needs to be numerically encoded
to be used as input to train supervised classification models. We compared OneHot encoding with
transfer learning using a 650 million parameter LPLM (ESM-2 model) [33] as input features for
two models: an XGBoost model, where we flatten the features by taking the mean, and a CNN
model. In our testing phase we found that transfer learning significantly improved prediction by
both models (see Supplementary Tables) and that the sequences proposed by each model appeared to
capture different features of our training data. Indeed, this is not surprising since mean flattening
the feature embeddings for XGBoost is equivalent to training on global features of these peptide
sequences, while the CNN model is capable of learning local features. We therefore used both models
with transfer learning to individually design molecules (Fig 1a), as well as a transfer learning-based
ensemble model in order to leverage both the global and local features learned by the XGBoost
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Algorithm 1 Evolutionary Monte Carlo Search (EMCS)
Select N chains of amino acid sequences [0, 1, .., i, .., N ], with corresponding temperature ladder
[T1, T2, .., Ti, .., TN ] such that Ti ≥ Tj for i > j, with fitness f(i)
Set crossover rate γ such that γ ⊆ [0, 1), and define maximum mutation, crossover, and swap
events as µ, α, β
Set minimum and maximum number of iterations kmin and kmax, respectively
Set convergence condition f(i) ≥ C where f(i) is the fitness of sequence i
repeat

Sample random number p from uniform distribution [0, 1)
if p > γ then

Make random point mutations at q loci for each sequence i to yield new set of proposed
sequences denoted by j, where q ∈ {1, . . . , µ} is chosen uniformly at random
Update each sequence by accepting or rejecting each proposed sequence using the metropolis
hasting criterion i.e. with probability min(1, rmh), where rmh = exp( f(j)−f(i)

T )
else

for number of crossover events α do
Let i1, j1 be two random sequences corresponding to temperatures Ti, Tj . Pick a random
crossover locus between [2, N-1], where N is the length of the peptide.
Propose a set of two sequences i2 and j2 by crossing over i1, j1 at the chosen crossover
locus. This results in i2 being identical to sequence i1 prior to our crossover locus, and
identical to sequence j1 post our crossover locus. Similarly, j2 is identical to sequence j1
prior to the crossover locus, and identical to sequence i1 post the crossover locus.
For two temperatures Ti and Tj such that Ti ≤ Tj , order i2, j2, and i1, j1 such that
f(i2) > f(i1) and f(j2) > f(j1)
Accept the new set of sequences i2, j2 with probability min(1, rc) where rc is defined as
rc = exp

(
f(i2)−f(i1)

Ti
− f(j2)−f(j1)

Tj

)
. If accepted, assign i2, j2 to chains at temperatures

Ti, Tj respectively.
end for

end if
for number of swap events β do

Select two sequences i and j at chains corresponding to Ti, Tj , such that j = i± 1, and swap
their sequence positions such that i → j and j → i with probability min(1, rre), where rre

is defined as rre = exp
(
−(f(i)− f(j))

(
1
Ti

− 1
Tj

))
end for

until iterations > kmax or ((fi ≥ C) for any sequence and iterations > kmin)

and CNN models respectively. Specific model architectures and training details are available in the
Supplementary.

2.2 Metropolis-Hasting Monte Carlo Search (MHMCS)

The MHMCS algorithm operates by proposing a low number of mutations to modify the current
molecule and then evaluating the new molecule’s fitness; if fitness improves, the proposal is accepted,
while, if fitness decreases, the proposal is accepted with probability weighted by the ratio of the
proposed fitness to the current fitness. The latter possibility ensures that sub-optimal moves can be
made to ensure that the search is capable of escaping from a local optima, although MHMCS tends to
struggle with extremely deep optima.

2.3 Evolutionary Monte Carlo Search (EMCS)

Evolutionary Monte Carlo Search (EMCS) extends traditional Metropolis-Hastings Monte Carlo
Search (MHMCS) by introducing genetic crossover events in a parallel tempering setup [27, 34].
In parallel tempering, multiple MHMCS chains are run simultaneously at different temperatures
(referred to as a temperature ladder) and are swapped at two randomly chosen temperatures after a
predetermined number of iterations. The primary advantage of parallel tempering is that it allows
MHMCS to occur over a larger search radius without sacrificing resolution. EMCS builds upon
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parallel tempering by adding genetic crossover events (domain swapping through chain interpolation).
This allows for an even larger search radius (Fig 1b), while also adding the possibility of aggregation
of favorable protein domains, which we hypothesize is critical to exploit the small number of positive
hits in our training data.

Algorithm 1 details our implementation of EMC as a search tool. EMCS is highly versatile and
allows for vastly different exploratory behaviors compared to traditional sampling techniques due
to the implementation of a custom temperature ladder, as well as predefined crossover, mutation,
and swap rates [34]. These parameters can be tuned for more efficient exploration depending on the
specific design problem and the complexity of the discrete high-dimensional fitness landscape.

Each primary iteration in EMCS can potentially change the state of the algorithm in one of three
ways, namely, point mutations, swaps, and crossovers between different temperature chains. The
possibility of the acceptance of sub-optimal moves for each of these three classes depends on how we
define the acceptance criterion. We use rmh, the standard Boltzmann Metropolis-Hastings acceptance
criterion, for mutation-based moves, which as described earlier, accepts sub-optimal moves with
probability weighted by the ratio of the proposed fitness to the current fitness. For swaps between
two consecutive chains, we use rre, the standard parallel tempering criterion also used in [34]. Using
this criterion, any proposed swap in which the higher fitness sequence in proposed to move to the
lower temperature chain is accepted. In a swap in which a higher fitness sequence is proposed to
move to the higher temperature, the move is accepted with probability inversely proportional to
the magnitude of the difference of the temperatures of the two chains, as well as the fitness of the
two sequences. Finally, the crossover criterion rc, also adapted from [34], accepts crossover moves
taking into account the difference in fitness between the set of old and new sequences, in addition to
the difference of temperatures of the two chains involved in the crossover. For simplicity, we have
summarized the behaviour of the crossover criterion in the supplementary, and we note that in general,
the crossover criterion penalizes an overall decrease in fitness when taking into account both chains.

3 Results

The protein fitness landscape is known to be highly sensitive, multi-peaked, and rugged [1, 2],
reflecting the possibility that a complete loss of function can arise due to a relatively small number
of point mutations (e.g. mutations in catalytic domains, mutations that cause misfolding, ...). The
complexity of this space presents obvious challenges for efficient exploration. Here we compare how
EMCS and MHMCS respectively explore the discrete fitness landscape of 85aa proteins capable of
gene activation, and evaluate prediction success rates, sequence diversity, and convergence speeds.

3.1 Experimental Screening

For experimental validation, we used EMCS and MHMCS to design novel proteins using all three
of our models (XGBoost, CNN, ensemble). Together, EMCS and MHMCS designed 4600 novel
sequences that are largely distinct from the sequence space occupied by the original training data
(Fig 2), confirming that both model-guided sampling techniques are capable of proposing diverse
novel proteins. To ensure that we could accurately identify gene activators in our experimental
validation, we also included 300 previously validated negative controls (random sequences) to the
library. We then experimentally assayed the peptides for their ability to activate a genetic locus (full
details of experimental design can be found in Supplementary). In total, we identified 357 positive
hits (7.59% hit rate) where a positive hit indicates that the peptide was found to activate a synthetic
gene reporter significantly over background fluorescence. In contrast, the initial screen had a hit rate
of only 0.51%. If we use the latter number as a proxy for the fraction of naturally occurring 85aa
peptide sequences that are capable of gene activation, then our approach increased the baseline hit
rate by ≈ 15-fold. In fact, the best model-guided sampling technique (ensemble model + EMCS
from known hits), increased the hit rate ≈ 45-fold (Table 1) by this metric. Even with initialization
from known positive hits, the sequences proposed by EMCS were highly dissimilar from anything in
the training set, which suggests that EMCS is capable of escaping deep local optima to efficiently
traverse the fitness landscape and identify diverse high fitness peptides.
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Search Method Initialization # Sequences # Positive Hits Hit Percentage
EMCS known 410 94 22.9%
EMCS random 390 39 10%

MHMCS random 200 2 1 %
Table 1: Positive hit results for the ensemble model

3.2 Sequence Diversity

To compare sequence proposals between EMCS and MHMCS, we performed an in silico sampling
experiment where we explore the fitness landscape 4000 times with each algorithm using identical
and controlled initial conditions (see Supplementary for additional details).

A unique advantage of EMCS is its ability to identify novel high fitness sequences even when initial-
ized from sequences that were known positive hits (and thus already in a high fitness neighborhood).
When initialized from known positive hits, the final edit distances of sequences discovered by EMCS
are significantly higher when compared to the sequences discovered by MHMCS using a similar
temperature regime (see Supplementary). Consistently, using entropy as a measure of information
change, we calculated the average entropy change per iteration of EMCS and MHMCS over 107
iterations (Fig.3a) and we show that the average entropy change per iteration in EMCS is ≈ 3-fold
higher (using the default parameters of crossover rate of 0.5 and a total of 4 chains) than that of
MHMCS (assuming the same mutation rate).

We postulate that the increased proposed sequence diversity and increased entropy per iteration seen
with EMCS is due to the genetic crossover steps, where functionally beneficial protein domains can
be exchanged between known sequences which are then further refined via point mutations. Escape
from local minima is further encouraged by the incorporation of a temperature ladder, which allows
for an increase in the search radius. In contrast, MHMCS is restricted to a single temperature and can
only access domains in the fitness function that are accessible via point mutations alone. This hinders
the ability of MHMCS to converge at a domain that corresponds to a diverse sequence when starting
from a known positive sequence because it will require many sub-optimal moves to escape for the
local optima of the initial sequence.

Figure 2: Principal Component Analysis (PCA) of original training set (grey and orange points) with
novel sequences designed by EMCS (blue) and MHMCS (red) using OneHot encoding.
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Figure 3: a. Entropy change distribution for 107 MHMCS and EMCS primary iterations using default
parameters. From an information perspective, EMCS explores a larger region of the fitness space per
iteration compared to MHMCS. b. i) Iterations to convergence (f ≥ 0.95) starting from random pre-
defined sequences for 2361 sequences obtained by 2571 MHMCS runs at T = 2.5× 10−3, 10−4. ii)
Iterations to convergence for 1171 sequences obtained by 1171 EMCS runs under default parameters.
iii) Number of iterations to arrive at convergence and/or positive hits (f ≥ 0.5) for 2571 sequences
from 2571 MHMCS runs at T = 2.5 × 10−3, 10−4. 210 of the 2571 sequences failed to reach
convergence (but succeeded in yielding positive hits (f > 0.5)). iv) Iterations to arrive at convergence
and/or positive hits for 2720 sequences obtained by 1171 EMCS runs under default parameters,
yielding an average of 2.32 positive hits per EMCS run of 4 chains.

3.3 Convergence

When initialized at random sequences, EMCS converges 1.25 - 5x faster than MHMCS (depending on
choice of temperature and crossover rates, as shown in Fig.3b) likely due to the algorithm’s increased
versatility over MHMCS. With default parameters, we achieved convergence for 1171 EMCS runs
where we obtained at least one sequence per run that had a fitness ≥ 0.95. In addition, due to the
inclusion of 4 chains, EMCS yielded an average of 2.322 sequences per run that had fitness ≥ 0.5,
thereby giving us a total of N = 2720 sequences of fitness ≥ 0.5 for 1171 runs. For MHMCS, chains
that started at temperatures greater than 2.5x10−2 had a minimum failure rate of 50%, and were
dropped from the experiment. When excluding those sequences, we obtained a total of N = 2571
sequences from 2571 runs. 2361 of those sequences had fitness ≥ 0.95. The remaining 210 failed to
reach convergence, but still had final fitness ≥ 0.5.
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4 Discussion

In this work, we propose a two step machine learning and sampling approach for protein engineering
problems where training data is limited and positive hits are rare. Our method involves leveraging
Large Protein Language Models (LPLMs) with transfer learning to estimate a fitness landscape,
and then efficiently sampling the fitness landscape with Evolutionary Monte Carlo Search (EMCS)
to propose novel high fitness protein sequences. As a proof-of-concept, we apply this approach
to the problem of designing small gene activators and demonstrate that our method is capable of
successfully designing novel and diverse protein sequences with dramatically higher experimental
validation rates when compared to a more traditional sampling method (MHMCS) or baseline
discovery from high-throughput screening.

The importance of this approach is magnified when taking into account the complexities of the
wet lab testing cycle: a single round of screening involves library design, DNA synthesis, plasmid
cloning, viral packaging, cell line infection, fluorescence-activated cell sorting (FACS), DNA library
preparation, next-generation DNA sequencing, and downstream bioinformatic analysis. Furthermore,
in the field of rational protein engineering, multiple rounds of iterative screening are generally
required to discover and validate novel proteins with desired functionality. Given the financial,
temporal, and technical costs associated with the wet lab testing cycle, there is obvious value in
accelerating this process to reduce the experimental burden of protein engineering.

The immensity of the protein sequence space coupled with the computational cost of embedding a
protein using LPLMs like ESM-2 called for an efficient sampling algorithm that could escape local
optima without compromising resolution. The EMC algorithm is ideally suited to this use case, as the
incorporation of a temperature ladder allows for the simultaneous existence of multiple acceptance
ratios. Furthermore, the genetic crossover steps allow for more efficient exploration of the fitness
landscape, as shown by sequence diversity and average entropy change per iteration of MHMCS vs.
EMCS.

We believe that the power of our approach lies in the combination of transfer learning via LPLMs
and EMCS. Since LPLMs are trained on an immense number of diverse protein sequences, modern
LPLM embeddings implicitly contain a wealth of features describing a protein’s biochemical, bio-
physical, evolutionary, and even 3-dimensional structure information [33]; as such, we reason that
LPLM embeddings of novel proposed sequences are capable of capturing the predicted functional
consequences of genetic crossovers from EMCS such that swaps resulting in misfolded or non-active
proteins are assigned low fitness and thus not selected by EMCS. Conversely, potential swaps and
domains that can act synergistically will be assigned a high fitness by our semi-supervised transfer
learning-based model and selected for by EMCS, even if those domains are not evolutionarily related.
In contrast, since GANs and diffusion models sample from a low-dimensional latent space, and then
pass the sample through the model to obtain the proposed sequence, only sequences that are close to
the training data in latent space can be designed by these methods; additionally, there’s no guarantee
that high synergy domains will be close in the latent space (especially if they’re not evolutionarily
related) limiting the potential diversity of sequences that can be proposed by generative algorithms
trained on limited and skewed training data.

We believe our framework has a number of advantages over both prior ML-guided protein design
approaches with traditional sampling techniques as well as the classic laboratory protein engineering
approach. Firstly, assays that screen diverse, natural proteins for peptides of specific function typically
have extremely low hit rates whereas novel sequences proposed by our approach had significantly
higher hit rates in the validation experiment. Additionally, the small number of positive hits in the
training data of protein engineering problems inherently limits the accuracy and generalizability of
the fitness function; by leveraging information from LPLMs and incorporating multiple positive hits
in the proposal of novel sequences through EMCS domain swapping, we believe our approach is
capable of attenuating these disadvantages. Finally, though our proof-of-concept involved the design
of relatively small proteins, we anticipate that our approach will generalize especially well to protein
engineering problems involving larger proteins with multiple well characterized domains. While we
aim to extend our approach to the application of larger proteins, our sampling algorithm will first
need to be modified and optimized as random swaps within larger proteins are increasingly likely
to result in low fitness predictions due to the presence of longer conserved domains. The approach
described here should be of benefit to the wider scientific community, especially those involved in
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protein engineering challenges, and has the potential to accelerate the design and testing of novel
proteins for a variety of purposes including therapeutic medicines.
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